Tapahtumakalenteri (vanha)

maaliskuu 13

Single Cell Omics symposium

The symposium covers broad areas of single cell omics from spatial interactions to gene regulatory networks, with methodologies ranging from multiomics to RNA velocity and long-read sequencing, applied in a wide range of biological contexts: brain development and aging, skin physiology, cardiovascular diseases, and cancer.

 

Program, including lunch, and a poster session with sparkling, begins at 9 AM and ends at 5:30 PM on March-13. The symposium is on-site only, free of charge and everybody is warmly welcome to register! 

 

Speakers: Hagen Tilgner (Weill Cornell Medicine), Maria Kasper (Karolinska Institute), Gioele La Manno (EPFL), Judith Zaugg (EMBL Heidelberg), Elisa Manieri (University of Veterinary Medicine Vienna), will present their work, in addition to national speakers Mariike Kuijjer (University of Helsinki, University of Oslo) and Minna Kaikkonen-Määttä (University of Eastern Finland). 

 

The symposium is part of the Single Cell Course week 2025 with additional hands-on wet-lab and data-analysis courses for students. The course code for symposium is DPBM-161.

PS. The poster session provides an excellent opportunity to present and discuss your single cell omics related projects or plans, with one extra credit for students. Please be prepared to give a tentative poster title when registering.

 

Organising team: Anna Vähärautio, Jenni Lahtela, Saara Ollila, Helena Kilpinen, Merja Heinäniemi, Iivari Kleino, Rafa Najumudeen, Laura Elo, Eija Korpelainen.


Aloitusaika: 13.03.2025 09:00
Lopetusaika: 13.03.2025 17:30
Kesto: 8 hours 30 minutes
Sijainti: Biomedicum1, lecture hall 1, Haartmaninkatu 8, 00290 Helsinki
Tyyppi: Symposium
Organisaatio: Helsinki Institute of Life Science HiLIFE
Yhteyshenkilö: anna.vaharautio@helsinki.fi
maaliskuu 13

HiLIFE / Biomedicum Helsinki seminar by Hagen Tilgner

Brain isoform expression at single-cell resolution in (developmental) time and (anatomical) space – and in neurodegeneration

Assistant Professor Hagen Tilgner from the Weill Cornell, NY, USA will give a talk in the HiLIFE seminar series as part of the Single Cell Omics Symposium. The event is fully booked but this lecture can be attended even without registration to the symposium.

Hagen Tilgner studied computer science in Germany and France, and after a Master’s thesis (for France) at the Sanger Institute (UK), did his PhD with Roderic Guigó at the Centre for Genomic Regulation in Barcelona. There he focused on RNA and the co-transcriptionality of splicing (see Tilgner et al, Genome Res, 2012 for example). His postdoctoral work at Stanford with Michael Snyder focused on technology development, specifically for long-read transcriptomics (see for example Sharon*, Tilgner*, Grubert, Snyder, Nature Biotechnology’13, Tilgner*, Sharon*, Grubert*, Snyder, PNAS’14 or Tilgner*, Jahanbani* et al, Nature Biotechnology’15). He started his lab at Weill Cornell in New York City in 2016 focusing on technologies to decipher the actions of RNA isoforms in the brain. The lab is a multi-disciplinary lab, including wet-lab technology development (see for example single-cell isoform RNA sequencing, ScISOr-Seq, Gupta et al, Nature Biotechnology’18 or SnISOr-Seq, Hardwick et al, Nature Biotechnology’22) and dry-lab approaches (see for example Joglekar et al, Nature Communications’21 or Prjibelski et al, Nature Biotechnology’23) as well as combined large-scale efforts centered on the brain (for example, Joglekar et al, Nature Neuroscience’24) where Maths/CS, molecular biology and neuroscience backgrounds interact to further our understanding of isoforms in healthy and diseased brain of humans and model organisms. 

Tilgner Lab

 

Abstract: Most mammalian genes encode multiple distinct RNA isoforms and the brain harbors especially diverse isoforms. Complex tissue includes diverse cell types, which employ distinct isoforms. To untangle full-length cell-type specific brain isoform profiles, we developed the first single-cell long-read technology for >>1,000 cells and fresh tissues (Single-cell isoform RNA sequencing - ScISOr-Seq1) as well as for frozen tissues (Single-nuclei isoform RNA sequencing - SnISOr-Seq2). To add spatial resolution, we developed Slide-isoform sequencing (Sl-ISO-Seq)3. Collectively, these long-read approaches reveal a striking difference between coordinated pairs of exons with in-between exons (“Distant coordinated exons”) and without in-between exons (“Adjacent coordinated exons”): The former show strong enrichment for cell-type specific usage of exons, whereas the latter do not in mouse1 and human brain2. Of note, coordinated TSS-exon pairs and exon-polyA-site pairs follow the same trend as distant coordinated exon pairs2. Simultaneously, autism-associated exons are among the most highly variably used exons across cell types2. Spatially barcoded isoform sequencing revealed that often region-specific isoform differences correlate with precise boundaries of brain structures (e.g., from the choroid plexus to the hippocampus). However, genes including Snap25 go against this trend, using a steady gradient of exon inclusion as one traverses the brain3. Moreover, choroid plexus epithelial cells show a dramatically distinct isoform profile, which originates from distinct exon and poly(A) site usage, but most strongly from distinct TSS usage3.

For the NIH Brain Initiative, we have mapped single-cell isoform expression across development, brain regions and species. Neurotransmitter release and reuptake as well as synapse turnover genes harbor variability in the same cell type across anatomical regions but the same cell type traced across development shows more isoform variability than across adult anatomical regions. Moreover, most cell-type specific exons in adult mouse hippocampus behave similarly in human hippocampi. However, human brains have evolved additional cell-type specificity in splicing, suggesting gain-of-function isoforms4. Most recently, we have made advances in understanding the error sources of Pacific Biosciences and Oxford Nanopore long-read sequencing technologies5 and have implemented highly accurate long-read interpretation software6. Finally, the concurrent measurement of chromatin and splicing patterns in post-mortem human brain reveals that distinct chromatin-transcriptome coupling states can yield different splicing patterns and points to strong convergent dysregulation of both modalities in similar cell types in Alzheimer’s disease7.

  1. Gupta*, Collier* et al, Nature Biotechnology, 2018
  2. Hardwick*, Hu*, Joglekar* et al, Nature Biotechnology, 2022
  3. Joglekar et al, Nature Communications, 2021
  4. Joglekar et al, Nature Neuroscience, 2024
  5. Mikheenko*, Prjibelski* et al, Genome Research, 2022
  6. Prjibelski*, Mikheenko* et al, Nature Biotechnology, 2023
  7. Hu*, Foord*, Hsu* et al, biorxiv, 2024

    Selected publications:

    Proteome-scale characterisation of motif-based interactome rewiring by disease mutations. Kliche et al, Mol Syst Biol. 2024. https://pubmed.ncbi.nlm.nih.gov/39009827/

    Large-scale phage-based screening reveals extensive pan-viral mimicry of host short linear motifs. Mihalic et al, Nat Comm. 2023. https://pubmed.ncbi.nlm.nih.gov/37100772/

    Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Benz et al., Mol Syst Biol. 2022. https://pubmed.ncbi.nlm.nih.gov/35044719/


Aloitusaika: 13.03.2025 15:45
Lopetusaika: 13.03.2025 16:30
Kesto: 45 minutes
Sijainti: Biomedicum1, lecture hall 1, Haartmaninkatu 8, 00290 Helsinki
Tyyppi: Seminar
Organisaatio: Helsinki Institute of Life Science HiLIFE
Yhteyshenkilö: hilife-seminars@helsinki.fi
maaliskuu 14

Dissertation: Elisa Mikkonen

Elisa Mikkonen, University of Helsinki, Faculty of Medicine, Doctoral Programme in Biomedicine
Characterization of proteasome tissue expression and the role of AKIR-1 in regulating proteasome subcellular function

Opponent: professor Thorsten Hoppe,University of Cologne



Aloitusaika: 14.03.2025 12:00
Lopetusaika: 14.03.2025 14:00
Kesto: 2 hours
Sijainti: Haartman Institute, lecture hall 2, Haartmaninkatu 3, 00290 Helsinki
Tyyppi: Dissertation
Organisaatio: UH, Faculty of Medicine
Yhteyshenkilö: elisa.mikkonen@helsinki.fi
maaliskuu 14

Dissertation: Lari Pyöriä

Lari Pyöriä, University of Helsinki, Faculty of Medicine, Doctoral Programme in Biomedicine
The tissue-resident eukaryotic DNA virome in humans : Genetic composition, intra-host diversity and integration into the host genome

Opponent: Professor of Clinical Virology Aloysius Kroes, Leiden University



Aloitusaika: 14.03.2025 12:00
Lopetusaika: 14.03.2025 14:00
Kesto: 2 hours
Sijainti: Haartman Institute, lecture hall 1, Haartmaninkatu 3, 00290 Helsinki
Tyyppi: Dissertation
Organisaatio: UH, Faculty of Medicine
Yhteyshenkilö: lari.pyoria@helsinki.fi
maaliskuu 14

Dissertation: Matilda Roos-Mattila

Matilda Roos-Mattila , University of Helsinki, Faculty of Medicine,  Doctoral Program in Clinical Research
Stromal Inflammatory Markers and Drug Sensitivities in Pancreatic Malignancies

Opponent: Professor Johanna Ivaska, University of Turku



Aloitusaika: 14.03.2025 12:00
Lopetusaika: 14.03.2025 14:00
Kesto: 2 hours
Sijainti: HUS Siltasairaala, Kruunuhakasali, Haartmaninkatu 4
Tyyppi: Dissertation
Organisaatio: UH, Faculty of Medicine
Yhteyshenkilö: matilda.roos-mattila@helsinki.fi